Isolation and quantitative estimation of diesel exhaust and carbon black particles ingested by lung epithelial cells and alveolar macrophages in vitro.

نویسندگان

  • Rajiv K Saxena
  • M Ian Gilmour
  • Michael D Hays
چکیده

A new procedure for isolating and estimating ingested carbonaceous diesel exhaust particles (DEP) or carbon black (CB) particles by lung epithelial cells and macrophages is described. Cells were incubated with DEP or CB to examine cell-particle interaction and ingestion. After various incubation periods, the cells were separated from free extracellular DEP or CB particles by Ficoll density gradient centrifugation and dissolved in hot sodium dodecyl sulfate detergent. Insoluble DEP or CB residues were isolated by high-speed centrifugation, and the elemental carbon (EC) concentrations in the pellets were estimated by a thermal-optical-transmittance method (i.e., carbon analysis). From the EC concentration, the amount of ingested DEP or CB could be calculated. The described technique allowed the determination of the kinetics and dose dependence of DEP uptake by LA4 lung epithelial cells and MHS alveolar macrophages. Both cell types ingested DEP to a similar degree; however, the MHS macrophages took up significantly more CB than the epithelial cells. Cytochalasin D, an agent that blocks actin polymerization in the cells, inhibited approximately 80% of DEP uptake by both cell types, indicating that the process was actin-dependent in a manner similar to phagocytosis. This technique can be applied to examine the interactions between cells and particles containing EC and to study the modulation of particle uptake in diseased tissue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of exposure to diesel exhaust particles on the susceptibility of the lung to infection.

There are at least three mechanisms by which alveolar macrophages play a critical role in protecting the lung from bacterial or viral infections: production of inflammatory cytokines that recruit and activate lung phagocytes, production of antimicrobial reactive oxidant species, and production of interferon (an antiviral agent). In this article we summarize data concerning the effect of exposur...

متن کامل

Diesel Exhaust Particle Exposure In Vitro Alters Monocyte Differentiation and Function

Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low ...

متن کامل

Pulmonary toxicity of inhaled diesel exhaust and carbon black in chronically exposed rats. Part I: Neoplastic and nonneoplastic lung lesions.

This study compared the pulmonary carcinogenicities and selected noncancer effects produced by chronic exposure of rats at high rates to diesel exhaust and carbon black. The comparison was intended to provide insight into the likely importance of the mutagenic organic compounds associated with the soot portion of diesel exhaust in inducing pulmonary carcinogenicity in diesel exhaust-exposed rat...

متن کامل

Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats.

In this study, we tested the hypothesis that exposure to diesel exhaust particles (DEP) may increase susceptibility of the host to pulmonary infection. Male Sprague-Dawley rats received a single dose of DEP (5 mg/kg), carbon black (CB, 5 mg/kg), or saline intratracheally. Three days later, the rats were inoculated intratracheally with approximately 5,000 Listeria monocytogenes and sacrificed at...

متن کامل

Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism.

Chronic exposure to particulate air pollution is associated with lung function impairment. To determine the molecular mechanism(s) of this phenomenon, we investigated, in an alveolar human epithelial cell line (A549), whether diesel exhaust particles (DEPs), a main component of particulate air pollution, modulates the expression and activity of the matrix metalloprotease (MMP)-1, a collagenase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BioTechniques

دوره 44 6  شماره 

صفحات  -

تاریخ انتشار 2008